3.8.92 \(\int \frac {(a+b x)^2}{x^3 \sqrt {c x^2}} \, dx\)

Optimal. Leaf size=26 \[ -\frac {(a+b x)^3}{3 a x^2 \sqrt {c x^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {15, 37} \begin {gather*} -\frac {(a+b x)^3}{3 a x^2 \sqrt {c x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^2/(x^3*Sqrt[c*x^2]),x]

[Out]

-(a + b*x)^3/(3*a*x^2*Sqrt[c*x^2])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b x)^2}{x^3 \sqrt {c x^2}} \, dx &=\frac {x \int \frac {(a+b x)^2}{x^4} \, dx}{\sqrt {c x^2}}\\ &=-\frac {(a+b x)^3}{3 a x^2 \sqrt {c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 33, normalized size = 1.27 \begin {gather*} \frac {c \left (-a^2-3 a b x-3 b^2 x^2\right )}{3 \left (c x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^2/(x^3*Sqrt[c*x^2]),x]

[Out]

(c*(-a^2 - 3*a*b*x - 3*b^2*x^2))/(3*(c*x^2)^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.03, size = 38, normalized size = 1.46 \begin {gather*} \frac {\sqrt {c x^2} \left (-a^2-3 a b x-3 b^2 x^2\right )}{3 c x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a + b*x)^2/(x^3*Sqrt[c*x^2]),x]

[Out]

(Sqrt[c*x^2]*(-a^2 - 3*a*b*x - 3*b^2*x^2))/(3*c*x^4)

________________________________________________________________________________________

fricas [A]  time = 1.07, size = 32, normalized size = 1.23 \begin {gather*} -\frac {{\left (3 \, b^{2} x^{2} + 3 \, a b x + a^{2}\right )} \sqrt {c x^{2}}}{3 \, c x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/x^3/(c*x^2)^(1/2),x, algorithm="fricas")

[Out]

-1/3*(3*b^2*x^2 + 3*a*b*x + a^2)*sqrt(c*x^2)/(c*x^4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (b x + a\right )}^{2}}{\sqrt {c x^{2}} x^{3}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/x^3/(c*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x + a)^2/(sqrt(c*x^2)*x^3), x)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 30, normalized size = 1.15 \begin {gather*} -\frac {3 b^{2} x^{2}+3 a b x +a^{2}}{3 \sqrt {c \,x^{2}}\, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^2/x^3/(c*x^2)^(1/2),x)

[Out]

-1/3*(3*b^2*x^2+3*a*b*x+a^2)/x^2/(c*x^2)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.33, size = 33, normalized size = 1.27 \begin {gather*} -\frac {b^{2}}{\sqrt {c} x} - \frac {a b}{\sqrt {c} x^{2}} - \frac {a^{2}}{3 \, \sqrt {c} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/x^3/(c*x^2)^(1/2),x, algorithm="maxima")

[Out]

-b^2/(sqrt(c)*x) - a*b/(sqrt(c)*x^2) - 1/3*a^2/(sqrt(c)*x^3)

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 33, normalized size = 1.27 \begin {gather*} -\frac {a^2\,x^2+3\,a\,b\,x^3+3\,b^2\,x^4}{3\,\sqrt {c}\,{\left (x^2\right )}^{5/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^2/(x^3*(c*x^2)^(1/2)),x)

[Out]

-(a^2*x^2 + 3*b^2*x^4 + 3*a*b*x^3)/(3*c^(1/2)*(x^2)^(5/2))

________________________________________________________________________________________

sympy [B]  time = 0.66, size = 53, normalized size = 2.04 \begin {gather*} - \frac {a^{2}}{3 \sqrt {c} x^{2} \sqrt {x^{2}}} - \frac {a b}{\sqrt {c} x \sqrt {x^{2}}} - \frac {b^{2}}{\sqrt {c} \sqrt {x^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**2/x**3/(c*x**2)**(1/2),x)

[Out]

-a**2/(3*sqrt(c)*x**2*sqrt(x**2)) - a*b/(sqrt(c)*x*sqrt(x**2)) - b**2/(sqrt(c)*sqrt(x**2))

________________________________________________________________________________________